If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .
$T, F$
$F, F$
$F, T$
$T, T$
The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to
Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :
For any two statements $p$ and $q,$ the negation of the expression $p \vee ( \sim p\, \wedge \,q)$ is
The negation of the statement $(p \vee q)^{\wedge}(q \vee(\sim r))$ is